A taste of Girard’s Transcendental Syntax

ooo

Team LoVe - LIPN Université Sorbone Paris Nord

Boris ENG & Thomas Seiller

Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

1/8

Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

e "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

1/8

Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

e "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

AL r aXAW AL r axA)

1.\‘1/.2. .\?/.
By

1/8

Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

e "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

AL r A] AL r A] AL r A]

TN 2 N Y [1L) (d)
? * ® 06 ©® O

AL A o A ® AL

1/8

Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

e "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

"1

Al Al A e AL

(B ()i (
. . oliololol oo
ALTA A ® AT
;»cut<—J

e "Gol 1,2,4,5" : interpretation operator algebras

1/8

Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

e "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

"1

Al Al A e AL

(B ()i (
. . oliololol oo
ALTA A ® AT
;»cut<—J

e "Gol 1,2,4,5" : interpretation operator algebras
e Gol 3:

1/8

Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

"Multiplicatives" : proofs are permutations, cut-elimination connects permutations

"1

Al Al A e AL

\ \ \ \ (
. . oliololol oo
ALD A A ® AT
;»cut<—J

"Gol 1,2,4,5" : interpretation operator algebras

(7axﬁ

e Gol3:

- proofs as pairs of terms (a; = by) + ... + (a, = b,) (flows)

1/8

Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

"Multiplicatives" : proofs are permutations, cut-elimination connects permutations

"1 1

Al Al A e AL

(B ()i (
. . oliololol oo
ALD A A ® AT
;»cut<—J

"Gol 1,2,4,5" : interpretation operator algebras

e Gol3:

- proofs as pairs of terms (a; = by) + ... + (a, = b,) (flows)
- cut-elimination as resolution (unification)

1/8

Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

e "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

"1 1

Al A e Al A AL A

NS 2 NV [B () (é)

? * ® 06 ©® O
ALD A A ® AT

;»cut<—J

e "Gol 1,2,4,5" : interpretation operator algebras

e Gol 3:
- proofs as pairs of terms (a; = by) + ... + (a, = b,) (flows)
- cut-elimination as resolution (unification)

e Gol 6 : extension of this approach

1/8

Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

e "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

"1 "7
Af.\ A‘yoA;. Az.\A?l/. As o (\ (\ (é)

e "Gol 1,2,4,5" : interpretation operator algebras
e Gol 3:

- proofs as pairs of terms (a; = by) + ... + (a, = b,) (flows)
- cut-elimination as resolution (unification)

e Gol 6 : extension of this approach

e Transcendental Syntax : same but with different name and motivations. V8

Stellar Resolution
Term unification

First-order terms. t, u ::= x| f(ts, ..

= tn)

2/8

Stellar Resolution
Term unification

First-order terms. t,u ::=x| f(t, ..., tn)

Unification. t; = t, : can we find 6 : Vars — Terms such that 6t; = 6t,?

2/8

Stellar Resolution
Term unification

First-order terms. t,u ::=x| f(t, ..., tn)
Unification. t; = t, : can we find 6 : Vars — Terms such that 6t; = 6t,?

Matching. up-to-renaming at; = t,

2/8

Stellar Resolution
Term unification

First-order terms. t,u ::=x| f(t, ..., tn)
Unification. t; = t, : can we find 6 : Vars — Terms such that 6t; = 6t,?
Matching. up-to-renaming at; = t,

L for x = f(x) 2~ y = f(x) we have 8 =y — f(x)

2/8

Stellar Resolution
Stars and constellations

A reformulation of Robinson'’s first-order clausal resolution (logic programming).

3/8

Stellar Resolution
Stars and constellations

A reformulation of Robinson'’s first-order clausal resolution (logic programming).

Rays (atoms). r ::=t | +c(ty, ..., t,) | —c(t, ..., ty) where c is called a "colour".

3/8

Stellar Resolution
Stars and constellations

A reformulation of Robinson'’s first-order clausal resolution (logic programming).

Rays (atoms). r ::=t | +c(ty, ..., t,) | —c(t, ..., ty) where c is called a "colour".

Stars (clauses). finite and non-empty multiset ¢ = [ry, ..., rn].

3/8

Stellar Resolution
Stars and constellations

A reformulation of Robinson'’s first-order clausal resolution (logic programming).

Rays (atoms). r ::=t | +c(ty, ..., t,) | —c(t, ..., ty) where c is called a "colour".

Stars (clauses). finite and non-empty multiset ¢ = [ry, ..., rn].
L [x +f(2), —g(h(x, y)]

3/8

Stellar Resolution
Stars and constellations

A reformulation of Robinson'’s first-order clausal resolution (logic programming).

Rays (atoms). r ::=t | +c(ty, ..., t,) | —c(t, ..., ty) where c is called a "colour".

Stars (clauses). finite and non-empty multiset ¢ = [ry, ..., rn].
L [x +f(2), —g(h(x, y)]
Constellations (programs). multiset ® = ¢1 + ... + ¢ + ... (the variables are locals).

3/8

Stellar Resolution
Stars and constellations

A reformulation of Robinson'’s first-order clausal resolution (logic programming).

Rays (atoms). r ::=t | +c(ty, ..., t,) | —c(t, ..., ty) where c is called a "colour".

Stars (clauses). finite and non-empty multiset ¢ = [ry, ..., rn].
L [x +f(2), —g(h(x, y)]

Constellations (programs). multiset ® = ¢1 + ... + ¢ + ... (the variables are locals).

L [+add(0,y,y)] + [+add(s(x),y, s(z)), —add(x, y, z)]

3/8

Stellar Resolution
Stars and constellations

A reformulation of Robinson'’s first-order clausal resolution (logic programming).

Rays (atoms). r ::=t | +c(ty, ..., t,) | —c(t, ..., ty) where c is called a "colour".

Stars (clauses). finite and non-empty multiset ¢ = [ry, ..., rn].
L [x +f(2), —g(h(x, y)]

Constellations (programs). multiset ® = ¢1 + ... + ¢ + ... (the variables are locals).

L [+add(0,y,y)] + [+add(s(x),y, s(z)), —add(x, y, z)]

Unlike logic programming : no logic/meaning, no contradiction L, no goal/query.

3/8

Multiplicative Linear Logic
Interpreting the dynamics of proofs

(— ax j (— ax j (— ax j
At AT Ay A3l As

Aq

3 ®

4/8

Multiplicative Linear Logic
Interpreting the dynamics of proofs

{—an {—an {—an

1 Al 2 3
N\ A N\, 7
% ®
AL A A; ® AT

Patza (LX) | Palzya, (r-X)

Multiplicative Linear Logic
Interpreting the dynamics of proofs

{—an {—an {—an

1 Al 2 3
N\ A N\, 7
% ®
AL A A; ® AT

Patza (LX) | Palzya, (r-X) Pat(X) [Paeat (L -X)

4/8

Multiplicative Linear Logic
Interpreting the dynamics of proofs

{—an {—an {—an

1 Al 2 3
N\ A N\, 7
% ®
AL A A; ® AT

Patza (LX) | Palzya, (r-X) Pat(X) [Paeat (L -X)

Pa,ent (r-x)

pas(x)

4/8

Multiplicative Linear Logic
Interpreting the dynamics of proofs

{—an {—an {—an

1 Al 2 3
N\ A N\, 7
% ®
AL A A; ® AT

L

cut

Patza (LX) | Palzya, (r-X) Pat(X) [Paeat (L -X)

Pa,ent (r-x)

pas(x)

4/8

Multiplicative Linear Logic
Interpreting the dynamics of proofs

(— ax j
A A,

(— ax j
AL A

N
s

!

A1l 3 A

\

cut

(— ax j
AT As

+c.pataa(l-x)

+C.pataa(r-x)

pat(x)

+C.Paeal(1-X)

—C.paLza ()

—C-IOAZW\SL)

+C-DA2®A31(" - x)

Pas)

4/8

Multiplicative Linear Logic
Interpreting the dynamics of proofs

(— ax j
A A,

(— ax j
AL A

N
s

!

A1l 3 A

\

cut

(— ax j
AT As

+c.pataa(l-x)

+C.pataa(r-x)

pat(x)

+C.Paeal(1-X)

—C.paLza ()

—C-IOAZW\SL)

+C-DA2®A31(" - x)

Pas)

4/8

Multiplicative Linear Logic
Interpreting the dynamics of proofs

v(— ax j
A A,

(—an

At A

N\, 2
%

!

A1l 3 A

L

cut

(— ax jv
AT As

+c.pataa (LX)

+C.pataa(r-x)

pat(x)

+C.Paeal(1-X)

—C.paLza ()

—C-IOAZW\SL)

+C-DA2®A31(" - x)

Pas (x)

—C.Patza, ()

—C-pAmAal)

4/8

Multiplicative Linear Logic
Interpreting the dynamics of proofs

{_an

v(— ax j
AzL A,

1 Al
N\ A N\, 7
% ®
AL A A; ® AT
L cut J
Pat(X) | pa, (x)

(— ax j
A3l As

4/8

Multiplicative Linear Logic
Interpreting the dynamics of proofs

J_Faxj (axj raxﬁ'

; A A Ay As
NS N/
% ®
A1J- 2 A A ® ASL

L

PaL (x) | pa,(x)

> cut <

Cut-elimination : resolution of contraints on addresses

4/8

Multiplicative Linear Logic
Liberalisation of proofs

+c.pataa,(L-X)

+C.patza,(rex)

pat(x)

+C.pa,ent (LX)

—C.pataa,(1-X)

—C.Paent (LX)

+CPayent(r-x)

pas(x)

\

—c.pataa(r-x)

—C.Ppent(r-x)

5/8

Multiplicative Linear Logic
Liberalisation of proofs

+C.patza (LX)

+C-PA1L72A1(" -X)

pat(x)

+C.pa,ent (LX)

—C.pataa,(1-X)

—C.Paent (LX)

e pre-proofof FA {[pa(x)]}

+CPayent(r-x)

pas(x)

\

—c.pataa(r-x)

—C.Pp,ent(r-x)

5/8

Multiplicative Linear Logic
Liberalisation of proofs

+C-pA1L7§’A1 (t-x)

+C-PA}7XA1(F -X)

pat(x)

"‘C-F’AzeaAzi(1 -x)

—c.patza(L-X)

_C-pAZQAsi(l “x)

e pre-proofof FA {[pa(x)]}

® n-ary axioms

+C-pA2®A3l (r-x)

Pas x)

\

—C.patza(rex)

_C-pAz®A3L(r - X)

{[pa,(t1), ..., pa,(t:)]}

5/8

Multiplicative Linear Logic
Liberalisation of proofs

+c. pA#;?m (1 0 X)

+C-PA}7yA1(r - X)

pat(x)

+C-pA2®Azi(1 -x)

—c.patza(L-X)

—C-IOAZQASL(l “x)

e pre-proofof FA {[pa(x)]}

® n-ary axioms

e standalonelink A® B

+C-PA2®A3i (r-x)

Pas x)

\

—C.patza(rex)

—C-PAzeA;(F - X)

{[pa,(t1), ..., pa,(t:)]}

[pa(x)] + [pe(x)]

5/8

Multiplicative Linear Logic
Liberalisation of proofs

+C-PA1U§>A1 (t-x)

+C-PA}7XA1('" - X)

pat(x)

+C-pA2®A3l(1 -x)

—c.patza(L-X)

_C-pA2®A3i(l “x)

e pre-proofof FA {[pa(x)]}

® n-ary axioms

e standalonelink A® B

‘f'C-IOAzqzaASL (r-x)

Pas x)

\

—C.patza(rex)

—C-PA2®A3L(r-x)

{[pa,(t1), ..., pa,(t:)]}

[pa(x)] + [pe(x)]

Generalises permutations but also partitions [Acclavio, Maieli]

Multiplicative Linear Logic
Girard'’s factory : vehicle and tests

ax
)
A1J- Al A, Aé—
N/ A
»

®
| |

A1J- 2 A Ay ® A3l

6/8

Multiplicative Linear Logic
Girard'’s factory : vehicle and tests

ax
>
A1J- Al A, Aé—
/ N/

» ®
J |
A1J- 2 A Ay ® A3l

6/8

Multiplicative Linear Logic
Girard'’s factory : vehicle and tests

Al Al A, Aé—

\ ANz
7 ®
J |
A1J-78A1 AzoaASl

6/8

Multiplicative Linear Logic
Girard'’s factory : vehicle and tests

Al Al A, Aé—

\ A
7 ®
J |
Af‘ygA1 A2®Aé‘

Danos-Regnier correctness — Vehicle + Test = certification of proof-net

6/8

Multiplicative Linear Logic
Girard'’s factory : vehicle and tests

+t.paes(l - x) | +t.patzype (L -x) +t.paes(r - x) | +t.paLzgpL(r-x)

Multiplicative Linear Logic

Girard'’s factory : vehicle and tests

+t.pags(l-x)

+t.patapl(L-X)

—t.paes(1X)
(a0]

+t.pags(r-x)

+t.pataypL(r-x)

[—t.pags(rx)
+c.a,1 (x)

]

[—c.aa(x) —c.ap(x)]

+c.daes(x)

== —c.dres(x) 1

paes(x)

[—t.ppLogpl (LX)

+c.qp(x)

]

[

—t.p,L et (rX)

+c.dg1 (x)

]

—c.q,1(x)

—c.qpL (x)
+C.qpL gl ()

[—C.d,L a1 (X)
Paloggl (x)

]

6/8

Multiplicative Linear Logic

Girard'’s factory : vehicle and tests

+t.pags(l-x)

+t.patapl(L-X)

—t.paes(1X)
(a0]

+t.pags(r-x)

+t.pataypL(r-x)

[—t.pags(rx)
+c.a,1 (x)

]

[—c.aa(x) —c.ap(x)]

+c.daes(x)

== —c.dres(x) 1

paes(x)

[—t.ppLogpl (LX)

+c.qp(x)

]

[

—t.p,L et (rX)

+c.dg1 (x)

]

—c.q,1(x)

—c.qpL (x)
+C.qpL gl ()

[—C.d,L a1 (X)
Paloggl (x)

]

6/8

Multiplicative Linear Logic
Girard’s factory : vehicle and tests

+t.pags(L - x) | +t.patzmpt(1-X) +t.paes(r - x) | +t.patzpe(r-x)
—t.paes(1X) —t.paes(rx) —t.ppLgpl (LX) —t.p,Logpl (rX)
[+cA§§(x)] [+czji(x)] [fc.ZBB(x)] [+/Z.q1:i(x)]
[—c.aa(x) —c.as(x)] —c.q,1(x) —c.q1 (x)
+c.anes(x) +c.dL a1 (X)
—c.dres(x) —C.QpL gl (X)
[Pass(x)] [Paloygl (X)]

correct iff for all test 1 we have Ex(®y W &1) = [pa,(x), ..., pa, (X)].

Multiplicative Linear Logic
Testing and typing

Similar to testing in programming but with finitely many tests.

&, & Ex(® W 3')?

7/8

Multiplicative Linear Logic
Testing and typing

Similar to testing in programming but with finitely many tests.

&, & Ex(® W 3')?

7/8

Multiplicative Linear Logic
Testing and typing

Similar to testing in programming but with finitely many tests.

e &1®’ when |Ex(® W &’)| < 00 : MLL+MIX (acyclic tests).

®, & : Ex(® W d’)?

7/8

Multiplicative Linear Logic

Testing and typing

Similar to testing in programming but with finitely many tests. &, ® : Ex(® & $/)?
e &1®’ when |Ex(® W &’)| < 00 : MLL+MIX (acyclic tests).
e &1 &’ when |Ex(® w ®’)| = 1: MLL (acyclic and connected tests).

7/8

Multiplicative Linear Logic
Testing and typing

Similar to testing in programming but with finitely many tests. &, ® : Ex(® & $/)?

e &1®’ when |Ex(® W &’)| < 00 : MLL+MIX (acyclic tests).
e &1 &’ when |Ex(® w ®’)| = 1: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen L :

7/8

Multiplicative Linear Logic
Testing and typing

Similar to testing in programming but with finitely many tests. &, ® : Ex(® & $/)?

e &1®’ when |Ex(® W &’)| < 00 : MLL+MIX (acyclic tests).
e &1 &’ when |Ex(® w ®’)| = 1: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen L :

e pre-type A : set of constellations.

7/8

Multiplicative Linear Logic
Testing and typing

Similar to testing in programming but with finitely many tests. &, ® : Ex(® & $/)?

e &1®’ when |Ex(® W &’)| < 00 : MLL+MIX (acyclic tests).
e &1 &’ when |Ex(® w ®’)| = 1: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen L :

e pre-type A : set of constellations.
e linear negation ~ A := Al := {®’ | VD €A &L &'}.

7/8

Multiplicative Linear Logic
Testing and typing

Similar to testing in programming but with finitely many tests. &, ® : Ex(® & $/)?

e &1®’ when |Ex(® W &’)| < 00 : MLL+MIX (acyclic tests).
e &1 &’ when |Ex(® w ®’)| = 1: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen L :

e pre-type A : set of constellations.
e linear negation ~ A := Al := {®’ | VD €A &L &'}.
e type: A= ALl

7/8

Multiplicative Linear Logic
Testing and typing
Similar to testing in programming but with finitely many tests. &, ® : Ex(® & $/)?
e &1d" when |Ex(® & &’)| < 0o : MLL+MIX (acyclic tests).
e &1 &’ when |Ex(® w ®’)| = 1: MLL (acyclic and connected tests).
We use realisability techniques (as in Ludics). From a chosen L :
e pre-type A : set of constellations.
e linear negation ~ A := Al := {®’ | VD €A &L &'}.
type: A= ALl
tensor:A® B= {®, U &5 | &, € A, &5 € B} 1L when A, B not matchable.

7/8

Multiplicative Linear Logic
Testing and typing
Similar to testing in programming but with finitely many tests. &, ® : Ex(® & $/)?
e &1d" when |Ex(® & &’)| < 0o : MLL+MIX (acyclic tests).
e &1 &’ when |Ex(® w ®’)| = 1: MLL (acyclic and connected tests).
We use realisability techniques (as in Ludics). From a chosen L :
e pre-type A : set of constellations.
e linear negation ~ A := Al := {®’ | VD €A &L &'}.
type: A= ALl
tensor:A® B= {®, U &5 | &, € A, &5 € B} 1L when A, B not matchable.

Types as descriptions of computation, not contraints.

7/8

Conclusion

Other linear logic fragments

8/8

Conclusion

Other linear logic fragments

e exponentials (IMELL) : work in progress

8/8

Conclusion

Other linear logic fragments
e exponentials (IMELL) : work in progress

e additives, neutrals, full exponentials : handled in second order

8/8

Conclusion

Other linear logic fragments
e exponentials (IMELL) : work in progress
e additives, neutrals, full exponentials : handled in second order

e first-order : internal colours + individuals Vx.A as multiplicatives.

8/8

Conclusion

Other linear logic fragments
e exponentials (IMELL) : work in progress

e additives, neutrals, full exponentials : handled in second order

e first-order : internal colours + individuals Vx.A as multiplicatives.

Natural encoding of several models :

8/8

Conclusion

Other linear logic fragments
e exponentials (IMELL) : work in progress

e additives, neutrals, full exponentials : handled in second order

e first-order : internal colours + individuals Vx.A as multiplicatives.

Natural encoding of several models :

e)\-calculus, logic programming (disjunctive clauses)

8/8

Conclusion

Other linear logic fragments
e exponentials (IMELL) : work in progress

e additives, neutrals, full exponentials : handled in second order

e first-order : internal colours + individuals Vx.A as multiplicatives.

Natural encoding of several models :

e)\-calculus, logic programming (disjunctive clauses)
L logico-functional space?

8/8

Conclusion

Other linear logic fragments
e exponentials (IMELL) : work in progress
e additives, neutrals, full exponentials : handled in second order

e first-order : internal colours + individuals Vx.A as multiplicatives.

Natural encoding of several models :

e)\-calculus, logic programming (disjunctive clauses)
L logico-functional space?

e Wang's tiles, abstract tile assembly model (aTAM) used in DNA computing

8/8

Conclusion

Other linear logic fragments
e exponentials (IMELL) : work in progress
e additives, neutrals, full exponentials : handled in second order

e first-order : internal colours + individuals Vx.A as multiplicatives.

Natural encoding of several models :

e)\-calculus, logic programming (disjunctive clauses)
L logico-functional space?

e Wang's tiles, abstract tile assembly model (aTAM) used in DNA computing
L cyclic (grid) diagrams

8/8

