A taste of Girard’s Transcendental Syntax

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Team LoVe - LIPN Université Sorbone Paris Nord

Boris ENG & Thomas Seiller



Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

1/8



Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

e "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

1/8



Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

e "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

AL r aXAW AL r axA)

1.\‘1/.2. .\?/.
By

1/8



Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

e "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

AL r A] AL r A] AL r A]

TN 2 N Y [ 1L ) ( d)
? * ® 06 ©® O

AL A o A ® AL

1/8



Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

e "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

"1

Al Al A e AL

( B ( )i (
. . oliololol oo
ALTA A ® AT
;»cut<—J

e "Gol 1,2,4,5" : interpretation operator algebras

1/8



Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

e "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

"1

Al Al A e AL

( B ( )i (
. . oliololol oo
ALTA A ® AT
;»cut<—J

e "Gol 1,2,4,5" : interpretation operator algebras
e Gol 3:

1/8



Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

"Multiplicatives" : proofs are permutations, cut-elimination connects permutations

"1

Al Al A e AL

\ \ \ \ (
. . oliololol oo
ALD A A ® AT
;»cut<—J

"Gol 1,2,4,5" : interpretation operator algebras

(7axﬁ

e Gol3:

- proofs as pairs of terms (a; = by) + ... + (a, = b,) (flows)

1/8



Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

"Multiplicatives" : proofs are permutations, cut-elimination connects permutations

"1 1

Al Al A e AL

( B ( )i (
. . oliololol oo
ALD A A ® AT
;»cut<—J

"Gol 1,2,4,5" : interpretation operator algebras

e Gol3:

- proofs as pairs of terms (a; = by) + ... + (a, = b,) (flows)
- cut-elimination as resolution (unification)

1/8



Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination

e "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

"1 1

Al A e Al A AL A

NS 2 NV [ B ( ) ( é)

? * ® 06 ©® O
ALD A A ® AT

;»cut<—J

e "Gol 1,2,4,5" : interpretation operator algebras

e Gol 3:
- proofs as pairs of terms (a; = by) + ... + (a, = b,) (flows)
- cut-elimination as resolution (unification)

e Gol 6 : extension of this approach

1/8



Transcendental Syntax
Geometry of Interaction : proof-nets from the mathematics of cut-elimination
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e "Gol 1,2,4,5" : interpretation operator algebras
e Gol 3:

- proofs as pairs of terms (a; = by) + ... + (a, = b,) (flows)
- cut-elimination as resolution (unification)

e Gol 6 : extension of this approach

e Transcendental Syntax : same but with different name and motivations. V8
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Stellar Resolution
Term unification

First-order terms. t,u ::=x| f(t, ..., tn)
Unification. t; = t, : can we find 6 : Vars — Terms such that 6t; = 6t,?
Matching. up-to-renaming at; = t,

L for x = f(x) 2~ y = f(x) we have 8 =y — f(x)
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A reformulation of Robinson'’s first-order clausal resolution (logic programming).

Rays (atoms). r ::=t | +c(ty, ..., t,) | —c(t, ..., ty) where c is called a "colour".

Stars (clauses). finite and non-empty multiset ¢ = [ry, ..., rn].
L [x +f(2), —g(h(x, y)]

Constellations (programs). multiset ® = ¢1 + ... + ¢ + ... (the variables are locals).

L [+add(0,y,y)] + [+add(s(x),y, s(z)), —add(x, y, z)]

Unlike logic programming : no logic/meaning, no contradiction L, no goal/query.
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Multiplicative Linear Logic
Interpreting the dynamics of proofs
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Cut-elimination : resolution of contraints on addresses
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Generalises permutations but also partitions [Acclavio, Maieli]
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Multiplicative Linear Logic
Girard’s factory : vehicle and tests

+t.pags(L - x) | +t.patzmpt(1-X) +t.paes(r - x) | +t.patzpe(r-x)
—t.paes(1X) —t.paes(rx) —t.ppLgpl (LX) —t.p,Logpl (rX)
[ +cA§§(x) ] [ +czji(x)] [ fc.ZBB(x) ] [ +/Z.q1:i(x) ]
[ —c.aa(x)  —c.as(x) ] —c.q,1(x) —c.q1 (x)
+c.anes(x) +c.dL a1 (X)
—c.dres(x) —C.QpL gl (X)
[ Pass(x) ] [ Paloygl (X) ]

correct iff for all test 1 we have Ex(®y W &1) = [pa,(x), ..., pa, (X)].
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e &1 &’ when |Ex(® w ®’)| = 1: MLL (acyclic and connected tests).
We use realisability techniques (as in Ludics). From a chosen L :
e pre-type A : set of constellations.
e linear negation ~ A := Al := {®’ | VD €A &L &'}.
type: A= ALl
tensor:A® B= {®, U &5 | &, € A, &5 € B} 1L when A, B not matchable.

Types as descriptions of computation, not contraints.
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Conclusion

Other linear logic fragments
e exponentials (IMELL) : work in progress
e additives, neutrals, full exponentials : handled in second order

e first-order : internal colours + individuals Vx.A as multiplicatives.

Natural encoding of several models :

e )\-calculus, logic programming (disjunctive clauses)
L logico-functional space?

e Wang's tiles, abstract tile assembly model (aTAM) used in DNA computing
L cyclic (grid) diagrams
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