A taste of Girard's Transcendental Syntax

Team LoVe - LIPN Université Sorbone Paris Nord

Boris ENG & Thomas Seiller

Geometry of Interaction: proof-nets from the mathematics of cut-elimination

Geometry of Interaction: proof-nets from the mathematics of cut-elimination

Geometry of Interaction: proof-nets from the mathematics of cut-elimination

Geometry of Interaction: proof-nets from the mathematics of cut-elimination

Geometry of Interaction: proof-nets from the mathematics of cut-elimination

• "Multiplicatives" : proofs are permutations, cut-elimination connects permutations

• "GoI 1,2,4,5": interpretation operator algebras

Geometry of Interaction: proof-nets from the mathematics of cut-elimination

- "GoI 1,2,4,5" : interpretation operator algebras
- Gol 3:

Geometry of Interaction: proof-nets from the mathematics of cut-elimination

- "GoI 1,2,4,5" : interpretation operator algebras
- Gol 3:
 - proofs as pairs of terms $(a_1 \leftrightharpoons b_1) + ... + (a_n \leftrightharpoons b_n)$ (flows)

Geometry of Interaction: proof-nets from the mathematics of cut-elimination

- "GoI 1,2,4,5" : interpretation operator algebras
- Gol 3:
 - proofs as pairs of terms $(a_1 \leftrightharpoons b_1) + ... + (a_n \leftrightharpoons b_n)$ (flows)
 - cut-elimination as resolution (unification)

Geometry of Interaction: proof-nets from the mathematics of cut-elimination

- "GoI 1,2,4,5" : interpretation operator algebras
- Gol 3:
 - proofs as pairs of terms $(a_1 \leftrightharpoons b_1) + ... + (a_n \leftrightharpoons b_n)$ (flows)
 - cut-elimination as resolution (unification)
- Gol 6: extension of this approach

Geometry of Interaction: proof-nets from the mathematics of cut-elimination

- "GoI 1,2,4,5": interpretation operator algebras
- Gol 3:
 - proofs as pairs of terms $(a_1 \leftrightharpoons b_1) + ... + (a_n \leftrightharpoons b_n)$ (flows)
 - cut-elimination as resolution (unification)
- Gol 6 : extension of this approach
- Transcendental Syntax : same but with different name and motivations.

Term unification

First-order terms. $t, u := x \mid f(t_1, ..., t_n)$

Term unification

First-order terms. $t, u := x \mid f(t_1, ..., t_n)$

Unification. $t_1 \doteq t_2$: can we find θ : Vars \rightarrow Terms such that $\theta t_1 = \theta t_2$?

Term unification

```
First-order terms. t, u ::= x \mid f(t_1, ..., t_n)
Unification. t_1 \doteq t_2 : can we find \theta : Vars \mapsto Terms such that \theta t_1 = \theta t_2?
Matching. up-to-renaming \alpha t_1 \doteq t_2
```

Term unification

```
First-order terms. t, u ::= x \mid f(t_1, ..., t_n)

Unification. t_1 \doteq t_2 : \text{can we find } \theta : Vars \mapsto Terms \text{ such that } \theta t_1 = \theta t_2 ?

Matching. up-to-renaming \alpha t_1 \doteq t_2

\downarrow for x \doteq f(x) \simeq_{\alpha} y \doteq f(x) we have \theta = y \mapsto f(x)
```

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming).

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming).

Rays (atoms). $r := t \mid +c(t_1, ..., t_n) \mid -c(t_1, ..., t_n)$ where *c* is called a "*colour*".

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming).

Rays (atoms). $r := t \mid +c(t_1, ..., t_n) \mid -c(t_1, ..., t_n)$ where c is called a "colour".

Stars (clauses). finite and non-empty multiset $\phi = [r_1, ..., r_n]$.

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming).

Rays (atoms).
$$r := t \mid +c(t_1, ..., t_n) \mid -c(t_1, ..., t_n)$$
 where *c* is called a "*colour*".

Stars (clauses). finite and non-empty multiset $\phi = [r_1, ..., r_n]$.

$$\downarrow [x, +f(z), -g(h(x, y))]$$

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming).

Rays (atoms).
$$r := t \mid +c(t_1, ..., t_n) \mid -c(t_1, ..., t_n)$$
 where c is called a "colour".

Stars (clauses). finite and non-empty multiset $\phi = [r_1, ..., r_n]$.

$$\downarrow [x, +f(z), -g(h(x, y))]$$

Constellations (programs). multiset $\Phi = \phi_1 + ... + \phi_m + ...$ (the variables are locals).

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming).

Rays (atoms).
$$r := t \mid +c(t_1, ..., t_n) \mid -c(t_1, ..., t_n)$$
 where c is called a "colour".

Stars (clauses). finite and non-empty multiset $\phi = [r_1, ..., r_n]$.

$$\downarrow [x, +f(z), -g(h(x, y))]$$

Constellations (programs). multiset $\Phi = \phi_1 + ... + \phi_m + ...$ (the variables are locals).

$$\vdash$$
 [+add(0, y, y)] + [+add(s(x), y, s(z)), -add(x, y, z)]

Stars and constellations

A reformulation of Robinson's first-order clausal resolution (logic programming).

Rays (atoms).
$$r := t \mid +c(t_1, ..., t_n) \mid -c(t_1, ..., t_n)$$
 where *c* is called a "*colour*".

Stars (clauses). finite and non-empty multiset $\phi = [r_1, ..., r_n]$.

$$\downarrow [x, +f(z), -g(h(x, y))]$$

Constellations (programs). multiset $\Phi = \phi_1 + ... + \phi_m + ...$ (the variables are locals).

$$\downarrow$$
 [+add(0, y, y)] + [+add(s(x), y, s(z)), -add(x, y, z)]

Unlike logic programming : no logic/meaning, no contradiction \perp , no goal/query.

$$p_{A_1^{\perp} \Im A_1}(1 \cdot x) | p_{A_1^{\perp} \Im A_1}(r \cdot x)$$

$$p_{A_1^{\perp} \Im A_1}(1 \cdot x) p_{A_1^{\perp} \Im A_1}(r \cdot x)$$

$$p_{\mathsf{A}_2^{\perp}}(x) \mid p_{\mathsf{A}_2 \otimes \mathsf{A}_3^{\perp}}(1 \cdot x)$$

$$p_{A_1^{\perp} \Im A_1}(1 \cdot x) p_{A_1^{\perp} \Im A_1}(r \cdot x)$$

$$p_{A_2^{\perp}}(x) p_{A_2 \otimes A_3^{\perp}}(1 \cdot x)$$

$$\left| p_{\mathsf{A}_2 \otimes \mathsf{A}_3^{\perp}}(\mathsf{r} \cdot \mathsf{x}) \right| p_{\mathsf{A}_3}(\mathsf{x})$$

$$p_{A_2\otimes A_3^{\perp}}(\mathbf{r}\cdot \mathbf{x}) p_{A_3}(\mathbf{x})$$

$$\left|-c.p_{\mathsf{A}_1^{\perp} \Im \mathsf{A}_1}(x)\right| -c.p_{\mathsf{A}_2 \otimes \mathsf{A}_3^{\perp}}(x)$$

Interpreting the dynamics of proofs

Cut-elimination: resolution of contraints on addresses

Liberalisation of proofs

Liberalisation of proofs

• pre-proof of $\vdash A \{[p_A(x)]\}$

Liberalisation of proofs

- pre-proof of $\vdash A \{[p_A(x)]\}$
- n-ary axioms $\{[p_{A_1}(t_1), ..., p_{A_n}(t_n)]\}$

Liberalisation of proofs

- pre-proof of $\vdash A \quad \{[p_A(x)]\}$
- n-ary axioms $\{[p_{A_1}(t_1), ..., p_{A_n}(t_n)]\}$
- standalone link $A \otimes B$ $[p_A(x)] + [p_B(x)]$

Liberalisation of proofs

- pre-proof of $\vdash A \quad \{[p_A(x)]\}$
- n-ary axioms $\{[p_{A_1}(t_1), ..., p_{A_n}(t_n)]\}$
- standalone link $A \otimes B$ $[p_A(x)] + [p_B(x)]$

Generalises permutations but also partitions [Acclavio, Maieli]

Girard's factory: vehicle and tests

Danos-Regnier correctness → Vehicle + Test = certification of proof-net

$$+t.p_{A\otimes B}(1\cdot x) +t.p_{A^{\perp} \mathfrak{R} B^{\perp}}(1\cdot x)$$

$$+t.p_{A\otimes B}(\mathbf{r}\cdot\mathbf{x})$$
 $+t.p_{A^{\perp} \mathfrak{R}B^{\perp}}(\mathbf{r}\cdot\mathbf{x})$

$$+t.p_{A\otimes B}(1\cdot x)$$
 $+t.p_{A^{\perp}\Im B^{\perp}}(1\cdot x)$

$$\left[\frac{-t.p_{A\otimes B}(t\cdot x)}{+c.q_A(x)}\right] \qquad \left[\frac{-t.p_{A\otimes B}(r\cdot x)}{+c.q_A\perp(x)}\right]$$

$$\left[\begin{array}{cc} -c.q_A(x) & -c.q_B(x) \\ +c.q_{A\otimes B}(x) \end{array}\right]$$

$$\left[\frac{-c.q_{A\otimes B}(x)}{p_{A\otimes B}(x)}\right]$$

$$+t.p_{A\otimes B}(r\cdot x)$$
 $+t.p_{A^{\perp} \mathfrak{R}B^{\perp}}(r\cdot x)$

$$\left[\frac{-t.p_{A^{\perp} \Im B^{\perp}}(1\cdot x)}{+c.q_{B}(x)}\right]$$

$$\left[\frac{-t.p_{A^{\perp} y_{B^{\perp}}}(r \cdot x)}{+c.q_{B^{\perp}}(x)}\right]$$

$$-c.q_{A^{\perp}}(x)$$

$$\frac{-c.q_{B^{\perp}}(x)}{+c.q_{A^{\perp} \mathcal{D}_{B^{\perp}}}(x)}$$

$$\left[\frac{-c.q_{A^{\perp} \Im B^{\perp}}(x)}{p_{A^{\perp} \Im B^{\perp}}(x)}\right]$$

Girard's factory: vehicle and tests

correct iff for all test Φ_T we have $\operatorname{Ex}(\Phi_V \uplus \Phi_T) = [p_{A_1}(x), ..., p_{A_n}(x)].$

Testing and typing

Similar to testing in programming but with finitely many tests. Φ , Φ' : Ex($\Phi \uplus \Phi'$)?

Testing and typing

Similar to testing in programming but with finitely many tests. Φ , Φ' : Ex($\Phi \uplus \Phi'$)?

Testing and typing

Similar to testing in programming but with finitely many tests. Φ , Φ' : Ex($\Phi \uplus \Phi'$)?

• $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| < \infty$: MLL+MIX (acyclic tests).

Testing and typing

Similar to testing in programming but with finitely many tests. Φ , Φ' : Ex($\Phi \uplus \Phi'$)?

- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| < \infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| = 1$: MLL (acyclic and connected tests).

Testing and typing

Similar to testing in programming but with finitely many tests. Φ , Φ' : Ex($\Phi \uplus \Phi'$)?

- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| < \infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| = 1$: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen \bot :

Testing and typing

Similar to testing in programming but with finitely many tests. Φ , Φ' : Ex($\Phi \uplus \Phi'$)?

- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| < \infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| = 1$: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen \bot :

• pre-type A : set of constellations.

Testing and typing

Similar to testing in programming but with finitely many tests. Φ , Φ' : Ex($\Phi \uplus \Phi'$)?

- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| < \infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| = 1$: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen \bot :

- pre-type A : set of constellations.
- linear negation $\sim A := A^{\perp} := \{ \Phi' \mid \forall \Phi \in A, \Phi \perp \Phi' \}.$

Testing and typing

Similar to testing in programming but with finitely many tests. Φ , Φ' : Ex($\Phi \uplus \Phi'$)?

- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| < \infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| = 1$: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen \bot :

- pre-type A : set of constellations.
- linear negation $\sim A := A^{\perp} := \{ \Phi' \mid \forall \Phi \in A, \Phi \perp \Phi' \}.$
- type : $A = A^{\perp \perp}$.

Testing and typing

Similar to testing in programming but with finitely many tests. Φ , Φ' : Ex($\Phi \uplus \Phi'$)?

- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| < \infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| = 1$: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen \bot :

- pre-type A : set of constellations.
- linear negation $\sim A := A^{\perp} := \{ \Phi' \mid \forall \Phi \in A, \Phi \perp \Phi' \}.$
- type : $A = A^{\perp \perp}$.
- tensor : $\mathbf{A} \otimes \mathbf{B} = \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in \mathbf{A}, \Phi_B \in \mathbf{B} \}^{\perp \perp} \text{ when } \mathbf{A}, \mathbf{B} \text{ not matchable.}$

Testing and typing

Similar to testing in programming but with finitely many tests. Φ , Φ' : Ex($\Phi \uplus \Phi'$)?

- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| < \infty$: MLL+MIX (acyclic tests).
- $\Phi \perp \Phi'$ when $|Ex(\Phi \uplus \Phi')| = 1$: MLL (acyclic and connected tests).

We use realisability techniques (as in Ludics). From a chosen \bot :

- pre-type A : set of constellations.
- linear negation $\sim A := A^{\perp} := \{ \Phi' \mid \forall \Phi \in A, \Phi \perp \Phi' \}.$
- type : $A = A^{\perp \perp}$.
- tensor : $A \otimes B = \{ \Phi_A \uplus \Phi_B \mid \Phi_A \in A, \Phi_B \in B \}^{\perp \perp} \text{ when } A, B \text{ not matchable.}$
- Types as descriptions of computation, not contraints.

Other linear logic fragments

Other linear logic fragments

• exponentials (IMELL) : work in progress

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials : handled in second order

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials : handled in second order
- first-order : internal colours + individuals $\forall x.A$ as multiplicatives.

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials : handled in second order
- first-order : internal colours + individuals $\forall x.A$ as multiplicatives.

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials: handled in second order
- first-order : internal colours + individuals $\forall x.A$ as multiplicatives.

Natural encoding of several models:

• λ -calculus, logic programming (disjunctive clauses)

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials: handled in second order
- first-order : internal colours + individuals $\forall x.A$ as multiplicatives.

- \bullet λ -calculus, logic programming (disjunctive clauses)
 - ↓ logico-functional space?

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials: handled in second order
- first-order : internal colours + individuals $\forall x.A$ as multiplicatives.

- λ -calculus, logic programming (disjunctive clauses)
 - ↓ logico-functional space?
- Wang's tiles, abstract tile assembly model (aTAM) used in DNA computing

Other linear logic fragments

- exponentials (IMELL) : work in progress
- additives, neutrals, full exponentials: handled in second order
- first-order : internal colours + individuals $\forall x.A$ as multiplicatives.

- λ -calculus, logic programming (disjunctive clauses)
 - ↓ logico-functional space?
- Wang's tiles, abstract tile assembly model (aTAM) used in DNA computing